P
 Pearson Edexcel

Mark Scheme

January 2022

Pearson Edexcel International GCSE
Mathematics A (4MA1)
Paper 2FR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Publications Code 4MA1_2FR_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown. If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

\mathbf{Q}	Working	Answer	Mark	Notes
$\mathbf{1}$ (a)		El Salvador	1	B1
(b)		400	1	B1 Allow hundred oe
	(c)	Bahamas $\&$ Syria	1	B1
	(d)		Three thousand, three hundred and seventy one	1
		B1		
			Total 4 marks	

$\mathbf{2}$ (a)(i)		$(3,4)$	1	B1
(ii)		$(-1,2)$	1	B1
(b)		Cross at (7, 2)	1	B1
(c)		$(1,3)$	2	B2 for (1,3) (B1 for one coordinate correct)
				Total 5 marks

$\mathbf{3}$ (a)		cylinder	1	B1 allow circular prism
	(b)		12	1
	B1			

$\mathbf{4}$ (a)		34	1	B1
	(b)		18	1
	B1	Total 2 marks		

$\mathbf{5}$ (a)		64	1	B1
(b)		0.45	1	B1
(c)		$\frac{3}{8}$	1	B1
(d)		$2 \frac{3}{4}$	1	B1
		square	1	B1
(e)				

$\mathbf{6}$	$24 \div 4(=6)$ or width $=24$		3	M1 Could be clearly shown on diagram.
	$10 \times{ }^{\prime} 6^{\prime}$ oe $\mathbf{\text { or }}$ $24+24+6+6$ oe			M1 dep M1
		60		A1 SC if no other marks scored B1 for $24 \times 4(=96)$
				Total 3 marks

$\mathbf{7}$ (a)	$21: 48$		2	M1 or $16: 7$
			$7: 16$	
	A1 cao			
		$\frac{11}{15}$	1	B1 oe exact fraction

$\mathbf{8}$	$0.14 \times 350(=49)$		3	M1
	' 49 ' +25 or $0.14 \times 350+25$			M1
		74		A1

9 (i)	$\begin{aligned} & 360-(92+44)(=224) \text { oe or } \\ & 92+44+x+x=360 \mathrm{oe} \end{aligned}$		3	M1
	$\begin{aligned} & \prime 224^{\prime} \div 2 \text { or } \\ & 2 x=' 224^{\prime} \text { oe } \end{aligned}$			M1
		112		A1
(ii)		Correct reason	1	B1 dep on M1 for a correct reason Angles in a quadrilateral sum to 360° (accept Angles in a quadrilateral sum to $\underline{\underline{360}}$)
				Total 4 mark

$\mathbf{1 0}$	$12 \times 11.75(=141)$		3	M1
	$\left(181-{ }^{\prime} 141 \prime\right) \div 5$			M1
		$8(.00)$		A1

11		TV, TB, TT, NV, NB, NT, HV, HB, HT	2	B2 for all combinations with no repeats or incorrect combinations

$\mathbf{1 2}$	$175+175+175+330(=855)$ or $\frac{330}{\prime} 855^{\prime}$		3	M1
	$\frac{330}{175+175+175+330} \times 100$ or $\frac{330}{\prime 855^{\prime}} \times 100$		M1	
		38.6		A1 Answers in range 38.59 to 38.6
		Total 3 marks		

$\mathbf{1 3}$	$65 \times 35 \times 45(=102375)$ and $5 \times 5 \times 5(=$ $125)$ or $(65 \div 5)(=13),(35 \div 5)(=7)$ and $(45 \div 5)(=9)$		3	M1
	$\prime 102375^{\prime} \div{ }^{\prime} 125^{\prime}$ or $' 13 ' \times{ }^{\prime} 7^{\prime} \times ' 9 '$		M1	
		819		A1

| $\mathbf{1 4}$ | eg $360-(160+90)(=110)$ | eg $360 \times \frac{400}{160}(=900)$ oe or
 $90 \times \frac{400}{160}(=225)$ oe | 3 | M1 method to calculate angle for Sandeep
 or total number of votes
 or for number of votes for Anjali |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | eg $\frac{400}{160} \times^{\prime} 110^{\prime}$ oe | $\prime 900^{\prime}-'^{\prime} 225^{\prime}-400$ | | M1 complete method to calculate number
 of votes for Sandeep |
| | | | A1 | |
| | | | | Total 3 marks |

$\mathbf{1 5}$ (a)			3	1
(b)		$8 x-x^{2}$	1	B1
(c)	$5 \times 4.2-6 \times-2.5$ or $21--15$ or $21+15$ oe		2	M1 $-x^{2}+8 x$
		$k-t=2 g$ or $\frac{k}{2}=g+\frac{t}{2}$ or $\frac{k-t}{2}$	36	
				A1
	(d)			M1 for isolating terms in g or for correctly dividing by 2.
			A1 oe e.g. $g=\frac{k}{2}-\frac{t}{2}$	

16 (a)	$\text { eg } \frac{3}{8} \times \frac{32}{27} \text { or } \frac{12}{32} \div \frac{27}{32}$		2	M1 Inverting $\frac{27}{32}$ and changing to multiply or writing both factions with the same denominator.
	$\begin{aligned} & \text { eg } \frac{3}{8} \times \frac{32}{27}=\frac{96}{216}=\frac{4}{9} \\ & \text { or } \frac{12}{32} \div \frac{27}{32}=\frac{12}{27}=\frac{4}{9} \\ & \text { or eg } \frac{z^{1}}{8^{1}} \times \frac{32^{4}}{2 z^{9}}=\frac{4}{9} \end{aligned}$	Shown		A1 Conclusion to $\frac{4}{9}$ - either sight of the result of the multiplication eg $\frac{96}{216}$ or $\frac{48}{108}$ or $\frac{24}{54}$ must be seen or fully correct cancelling must be seen prior to multiplication NB use of decimals scores no marks.
(b)	$\text { eg } \frac{40}{48}-\frac{18}{48} \text { or } \frac{20}{24}-\frac{9}{24}$		2	M1 for correct fractions with a common denominator of 24 or a multiple of 24
	$\text { eg } \frac{40}{48}-\frac{18}{48}=\frac{22}{48}=\frac{11}{24} \text { or } \frac{20}{24}-\frac{9}{24}=\frac{11}{24}$	Shown		A1 dep M1 for a correct answer from fully correct working.
				Total 4 marks

$\mathbf{1 7}$ (a)		140	1	B1 accept $138-142$ May be seen on diagram.
(b)	$[5.8,6.2]$		4	M1
	$‘[5.8,6.2] ’ \times 500$ $\left(=‘[2900,3100]^{\prime}\right)$			M1 ft
	$‘[2900,3100]^{\prime} \div 0.44$	6818		M1 ft
			A1 ft answer in range 6590-7045 but must be an integer	
			Total 5 marks	

$\mathbf{1 8}$ (a)	$1-(0.24+0.16+0.38)$ oe		2	M1
		0.22		A1 oe
(b)	$0.24+0.16(=0.4)$ oe		2	M1
		0.4		A1 oe

19 (a)	$720 \div 12(=60)$ or $78 \times 12(=936)$		4	M1	
	$78-60 '(=18)$ or '936' $-720(=216)$$\quad$or $720\left(1+\frac{P}{100}\right)=' 936 '$ or $\left(' x x^{\prime}=\right) \frac{' 9366^{\prime}}{720}(=1.3)$ oe			M1	
	$\frac{{ }^{\prime} 18 \text { ' }}{60} \times 100$ or $\frac{2166^{\prime}}{720} \times 100 \quad$'1.3' $\times 100-100$ oe or $(1.3-1) \times 100$			M1 complete method to find P	
		30		A1 ignore extra \% sign if given by candidate.	
(b)	$\begin{aligned} & 0.18 \times 1600(=288) \text { oe } \\ & \text { or } 0.82 \times 1600+800(=2112) \end{aligned}$		3	M1 if $1600 \times 18 \%$ seen, must have further processing of the 18% or the value (288) given.	$\begin{aligned} & \text { M2 for } 1.5 \times \\ & 12.5(=18.75) \\ & \text { or } \\ & 18 \div 1.5(=12) \end{aligned}$
	$\begin{aligned} & 0.125 \times(1600+800)(=300) \text { oe } \\ & \text { or }(1600+800) \times 0.875(=2100) \\ & \hline \end{aligned}$			M1	
		Coupon B and correct figures seen		A1 for Coupon B and 288 and 300 or 18.75(\%) and 18(\%) or $12(\%)$ and $12.5(\%)$ or 2112 and 2100	
					Total 7 marks

$\left.\begin{array}{|l|l|l|l|l|}\hline \mathbf{2 0} \text { (a) } & 4 y>12-5 & & 2 & \text { M1 Allow } y=\frac{7}{4} \text { oe or } y<\frac{7}{4}\end{array}\right]$| (b) | $12 x-10$
 or $2(6 x-5)=4 x-7$
 or
 $6 x-5=\frac{4}{2} x-\frac{7}{2}$ oe |
| :--- | :--- |
| | $12 x-4 x=-7+10$ oe
 or
 $6 x-\frac{4}{2} x=-\frac{7}{2}+5$ oe |
| | |

21	$\begin{aligned} & 360 \div 8(=45) \text { or } 360 \div 5(=72) \text { or } \\ & 180-(360 \div 8)(=135) \text { oe or } \\ & 180-(360 \div 5)(=108) \text { oe } \end{aligned}$		4	M1 finding interior or exterior angle of octagon or pentagon Angles may be seen on diagram - but must be obtuse if interior and acute if exterior.
	$\begin{aligned} & \text { ‘72' - '45’ (=27) or } \\ & \text { '135' - '108' (=27) } \end{aligned}$			M1 (dep 1st M1) using a pair of interior or pair of exterior angles to find angle IBC Angle may be seen on diagram.
	$\frac{180-{ }^{\prime} 27^{\prime}}{2}(=76.5)$			M1
		76.5		A1
				Total 4 marks

22	$\begin{array}{\|l\|} \hline 7200 \times 0.025(=180) \\ \text { or } 7200 \times 1.025(=7380) \text { oe } \\ \text { or } 7200 \times 1.075(=7740) \text { oe } \\ \text { or } 7200 \times 0.075(=540) \text { oe } \\ \hline \end{array}$		3	M1	$\begin{array}{\|l\|} \hline \text { M2 for } \\ 7200 \times(1.025)^{3} \end{array}$
	$\begin{aligned} & (7200+‘ 180 ') \times 0.025(=184.5) \\ & \text { and } \\ & (7200+‘ 180 '+‘ 184.5 ') \times 0.025(=189.1125) \\ & \text { and } \\ & 7200+' 180^{\prime}+' 184.5{ }^{\prime}+‘ 189.1 \ldots \prime(=7753.6125) \end{aligned}$			M1 NB year end values are 7380 and 7564.5(0) 7753.6125	
		7754		A1 answer in range 7753-7754	
					Total 3 ma

$\mathbf{2 3}$ (a)		1	1	B1
(b)		6	1	B1
(c)	$206+m-214=-3$ oe or $\frac{7^{-3} \times 7^{214}}{7^{206}}$ or $\frac{7^{211}}{7^{206}}$ oe	2	M1 allow $7^{206+m-214}=7^{-3}$ oe (must be in the form $7^{x}=7^{y}$ where x and y are correct expressions)	
		5		A1 accept 7^{5}
				Total 4 marks

24 (a)		$y=-3 x+5$ oe	2	B2 fully correct equation eg $y=-3 x+5$ or $y-5=-3(x-0)$ If not B2 then B1 for $y=-3 x+a$ with $a \neq 5$ or $y=b x+5(b \neq 0,-3) \text { or }$ $(L=)-3 x+5$
(b)	Lines (solid or dashed) $x=6$ and $y=2$ drawn		3	B1 The lines $x=6$ and $y=2$ should extend far enough to intersect with each other.
	Line (solid or dashed) $y=x+1$ drawn			B1 The line should extend from at least $x=1$ to $x=6$ or far enough to intersect with their horizontal and vertical lines.
	Region R shown (shaded or not shaded)	Correct region identified		B1 dep on B2
				Total 5 marks

$\mathbf{2 5}$	$22 \times 260(=5720)$ or $50 \times 218(=10900)$		3	M1
	$\frac{10900^{\prime}-{ }^{\prime} 5720^{\prime}}{28}\left(=\frac{5180}{28}\right)$			M1
		185		A1

26	$\begin{aligned} & \cos 30=\frac{24}{(A C)} \text { or } \sin ^{\prime} 60^{\prime}=\frac{24}{(A C)} \\ & \text { or } \frac{\sin ^{\prime} 60^{\prime}}{24}=\frac{\sin 90}{(A C)} \text { oe } \end{aligned}$		5	M1 for correct trig ratio involving $A C$	M2 for use of tan and Pythagoras to obtain $A C$ $(A B=) 24 \tan 30(=13.856 \ldots)$ and $\sqrt{13.856 \ldots{ }^{.2}+24^{2}}(=27.712 \ldots)$ If not M2, then M1 for use of tan and Pythagoras to obtain $A C^{2}$ $(A B=) 24 \tan 30(=13.856 \ldots)$ and $' 13.856 \ldots{ }^{\prime 2}+24^{2}(=768)$
	$\begin{aligned} & (A C=) \frac{24}{\cos 30}(=16 \sqrt{3}=27.712 \ldots) \text { or } \\ & (A C=) \frac{24}{\sin ^{\prime} 60^{\prime}}(=16 \sqrt{3}=27.712 \ldots) \\ & \text { or }(A C=) \frac{24 \times \sin 90}{\sin ^{\prime} 60^{\prime}} \end{aligned}$			M1 for a correct trig ratio for $A C$	
	$\frac{1}{2} \times 2 \times \pi \times 3(=3 \pi=9.424 \ldots)$			M1 for using $\pi \times 2 \times 3$ or $2 \pi \times 3$ correctly to find the arc length of the semicircle, or circumference of a circle with radius 3 .	
	'27.712...'+ '9.424...' - 2×3			M1 for a complete correct method to find the length AFEDC	
		31		A1 accept answers in range from 31 to 31.15	
					Total 5 marks

